Stat 534: formulae referenced in lecture, week 12: Hierarchical modeling

Vocabulary:

- Lots of related terms
 - Multilevel model
 - Hierarchical model
 - Mixed model
- Often used interchangeably
 - But many make distinctions
 - between specific subtypes of models
- Confusing!
- Common feature: distribution / likelihood of the data includes an integral or sum over an unknown quantity

Examples:

- Mixed model for subsampled data
 - Plots assigned to treatments
 - 5 soil cores per plot
 - plot = eu
 - soil core(plot) = ou

$$\begin{array}{rcl} Y_{ijk} &=& \mu_i + \tau_{ij} + \varepsilon_{ijk} \\ \tau_{ij} &\sim& N(0, \sigma_{plot}^2) \\ \varepsilon_{ijk} &\sim& N(0, \sigma_{core}^2) \end{array}$$

- Alternatively:

$$\mu_{ij} \sim N(\mu_i, \sigma_{plot}^2)$$

$$Y_{ijk} \mid \mu_{ij} \sim N(\mu_{ij}, \sigma_{core}^2)$$

$$Y_{ijk} = \int_{\sigma_{plot}^2} f(Y_{ijk} \mid \mu_{ij}) f(\mu_{ij}) d\mu_{ij}$$

• Tag loss problem

- Two groups of fish:
 - * those with tag
 - * those without tag
- Introduce a random variable R = # fish who retained tag
- Know T = # fish tagged last year
- -T R = # fish with only a fin clip
 - * define $c = (t_{12}, t_1, t_2, R (t_{12} + t_1 + t_2))$
 - * If R known, these are a multinomial sample of the R fish
 - * and T R known
 - * f_1 and f_2 are two independent binomial samples of the T - R fish who lost a tag

$$R \sim \operatorname{Bin}(T, r)$$

$$c \sim \operatorname{Multinom} \left(R, \left(p^2, p(1-p), p(1-p), (1-p)^2 \right) \right)$$

$$f_1 \sim \operatorname{Bin}(T-R, p)$$

$$f_2 \sim \operatorname{Bin}(T-R, p)$$

- and (importantly) c, f_1 , and f_2 are conditionally independent given the value of R

$$f(c, f_1, f_2) \sim \sum_R f(c \mid R) f(f_1 \mid R) f(f_2 \mid R) f(R)$$

Concepts

- Latent variable:
 - Find a random variable that, if you knew it, would simplify the problem
 - * R for tag loss problem
 - * μ_{ij} for the subsampling problem
 - * N_t in grizzly bear problem
- to construct a model,
 - Write out the model for the latent variable
 - Write out the model for the observations given the latent variable

- fitting the model to data
 - need a likelihood for the data, f(Y))
 - * the conditional distribution f(Y|latent)is not enough
 - Need to deal with the integral or the sum
 - When all random variables have normal distributions, added or substracted
 - * Y has a multivariate normal distribution
 - * Usually not independent
 - * but covariance matrix is a function of the various variances
 - In general, need to numerically approximate that integral or evaluate that sum
 - Could use likelihood
 - Almost all applications shift to a Bayesian paradigm

Bayes in principle

- How it differs from frequentist inference
- Frequentist (e.g. likelihood)
 - parameters are fixed but known constants
 - Data are random variables
 - Inference by maximizing the likelihood function
- Bayesian inference
 - parameters are random variables
 - Inference is conditional on the observed data
 - so data are fixed values
 - need to identify prior distributions
 - * what you want to say about the parameters before seeing the data
 - Inference by averaging the likelihood function w.r.t. the prior
 - Result is the posterior distribution of the parameters

Bayes in action

• Bayes rule - a mathematical statement about probabilities

$$f(X \mid Y) = \frac{f_Y(Y|X)f_X(X)}{\int_X f_Y(Y|X)f_X(X)dX}$$

- Allows you to go from one conditional distribution to the conditional distribution "the other way"
- A mathematical fact
- disagreements are about whether this is relevant to data analysis
- An example of a Bayes rule computation
 - Screening for rare diseases / terrorist activity
 - Prostate cancer and PSA tests
 - If you get a positive PSA test result, how likely are you to have prostate cancer?
 - Test is reasonably good at detecting cancer
 - * sensitivity = 86%
 - * P[positive test | have cancer] = 0.86
 - * specificity = 33%
 - * P[negative test | no cancer] = 0.33
 - need P[have cancer | positive test] to answer the Q
 - Answer about 2%, depending on prevalence of cancer!
 - How gotten:
 - * US white men, 40-59 yr old, prevalence = 1.6%
 - * assume 4,000,000 people

have cancer	PSA +	PSA -	# people
Yes			64,000
No			$3,\!936,\!000$
Total			4,000,000

_	Use	sens	sitivity	and	speci	ficity	to	fill	in	test
	resu	lts -	going	acro	ss the	rows	3			

have cancer	PSA +	PSA -	# people
Yes	$55,\!040$		64,000
No	$2,\!637,\!120$		$3,\!936,\!000$
Total	2,692,160		4,000,000

- Compute P[cancer | + test] = 55,040 / 2,692,160 = 2.04%

• Applying Bayes rule directly

$$P[\text{cancer} | + \text{test}] = \frac{P[+ \text{test} | \text{cancer}] \times P[\text{cancer}]}{P[+ \text{test} | \text{cancer}] \times P[\text{cancer}] + P[+ \text{test} | \text{no cancer}] \times P[\text{no cancer}]}$$
$$= \frac{0.86 \times 0.016}{0.86 \times 0.016 + (1 - 0.33) \times (1 - 0.016)}$$
$$= \frac{0.0138}{0.0138 + 0.6593}$$
$$= 0.0204$$

Bayes in data analysis

- θ , the parameters $\Rightarrow X$
- the data \Rightarrow Y
- Bayes rule gives you a distribution for the parameters given the data, $f(X \mid Y)$
- Connection: likelihood = $f(Y \mid X)$
- But Bayes not "free"
- Need to specify f(X): "the prior"
- Aside:
 - Fisher developed fiducial inference in the 1930's, 40's
 - attempted give f(parameter | data) without requiring a prior
 - Savage (1961): "enjoy the Bayesian omelet without breaking the Bayesian eggs"
 - almost never used today
- Types of Bayesians

- Differ in their view of the prior
- subjective Bayes
 - * Heyday: 1950's, 1960's
 - $\ast\,$ The prior is ${\bf your}$ belief
 - * People may/will have different priors
 - * And reach different conclusions from the same data
 - * led to vicious arguments
- objective Bayes
 - * ad hoc but useful collection of methods for learning from data
 - * emphasizes weakly informative priors
 - $\ast\,$ now the most commonly used approach

What you get by being Bayesian

- More intuitive "intervals"
 - Credible interval gives
 P[parameter in a specified interval]
 - Posterior predictive interval gives P[new observation in a specified interval]
- Useful probabilities, e.g.,
 - P[N > 100]
 - P[yield increase > cost of treatment]
- Model fit information
 - Information criteria:
 - * WAIC: Widely Applicable Information Criterion
 - * replacing older DIC: Deviance Information Criterion
 - Cross-validation assessment of fit
 - $\ast\,$ LOO-CV: leave-one-out cv
 - * sped up by some neat theory: PSIS: pareto-smoothed importance sampling
 - Model probabilities, P[model | data]
- Account for all modeled sources of uncertainty

- most models have "nuisance" parameters
- e.g. the variance in a t-test
 - * simple problems: can account for that uncertainty
 - $\ast\,$ e.g., by using a T distribution
- much harder in more complicated problems
- e.g., σ_{plot}^2 in the subsampling model
- non-Bayesian methods usually fix those at estimated values
- ignores uncertainty in those estimates
- Kenward-Roger degrees of freedom
- Bayesian methods account for that uncertainty
- in a principled manner, without problemspecific adjustments

What you don't get from a Bayesian analysis

- Confidence intervals
 - Replaced by credible intervals
 - Can choose priors so that credible interval = confidence interval
 - called matching or probability matching priors
- p-values
 - statements about probability of the data
 - Bayes conditions on the data
 - Bayes factors can be used as an alternative
- General shift from yes/no decisions to "how big", "how precise" questions

What you get by being a Bayesian in the 21'st century

• Bayes requires solving that integral/sum

$$f(\theta \mid \text{data}) = \frac{f_Y(\text{data}|\theta)f_X(\theta)}{\int_X f_Y(\text{data}|\theta)f_X(\theta)d\theta}$$

- For years, was a huge limitation
- Some combinations of $f(\text{data} \mid \theta)$ and $f(\theta)$ are "nice"
 - Analytical solution to that integral
 - Called "conjugate" priors
 - Beta distributions for binomial probabilities
 - Normal distributions for means
 - Gamma distributions for variances
- Not appropriate for most non-trivial problems
- late 1980's "the MCMC revolution"
 - Markov-Chain-Monte-Carlo
 - A collection of numerical methods to draw samples from the the posterior distribution without solving that integral
- 1997: BUGS/WinBUGS software
 - Allowed a data analyst to write out a model
 - software took care of all the computation
- Now: superseded by JAGS, STAN
- All have R interfaces to handle data management and graphing

Doing Bayes in practice

- MCMC is an iterative algorithm
 - requires initial values
 - want the stationary distribution
 - discard "burn-in" samples
 - how much to discard depends on problem
- Assess convergence to the stationary distribution
 - Use 3 or 4 sets of initial values
 - see whether they give similar distributions
 - Trace plots

- * Can you see the individual chains?
- * Hopefully not
- Gelman-Rubin statistic: want close to 1
 - * Ideally less than 1.05
 - $\ast\,$ hard problems have to accept up to 1.2
- If you haven't converged
 - * Increase # burning samples
 - * Think about the problem: are your priors too loose?
- If prior is arbitrary:
 - How important is the choice of prior?
 - Rerun with different choices
 - Prior sensitivity analysis
 - If sufficient data, "data overwhelms the prior"
- Gives you samples from the posterior distribution for each parameter, from which you can compute:
 - median or mean estimate
 - standard errors
 - credible intervals
- for parameters or combinations / transformations of parameters

Common "weakly-informative" priors

- means, regression coefficients
 - $-\theta \sim N(0, \sigma^2$, with large σ^2 , e.g. 1000
 - but be careful if $logit(\theta)$
- variances
 - canonical: $\Gamma(0.001, 0.001)$
 - * mean = 1, variance = 1000
 - * doesn't put enough probability close to 0
 - * concern for hierarchical model variances, e.g., σ_{plot}^2
 - Exponential(1)

$$-$$
 sd Unif $(0, 100)$ or sd Unif $(0, 10)$
- Half-Cauchy

Local linear trend model for population dynamics:

- A very useful hierarchical model
- Two latent variables
 - level: l, mean at time i
 - slope: s, non-random change in mean at time i

process

$$s_i = s_{i-1} + \gamma_i$$

$$l_i = l_{i-1} + s_{i-1} + \tau_i$$
observation
$$Y_i \sim N(l_i, \sigma_{error}^2)$$

$$\begin{array}{rcl} or: Y_i & \sim & Pois(exp(l_i)) \\ or: Y_i & \sim & NegBin(exp(l_i), \phi) \\ \\ & & & \\ \gamma_i & \sim & N(0, \sigma^2_{slope}) \\ & & & \\ \tau_i & \sim & N(0, \sigma^2_{level}) \end{array}$$

• Simplifications give other useful models

$$-\sigma_{slope}^{2} = 0: s_{i} \text{ constant}$$
$$-\sigma_{slope}^{2} = 0 \text{ and } \sigma_{level}^{2} = 0:$$
$$l_{i} = l_{i-1} + s$$
$$l_{t} = l_{0} + st$$

• An example of a state-space time series model