
Stat 534: formulae referenced in lecture, week 12:
Hierarchical modeling

Vocabulary:

• Lots of related terms

– Multilevel model

– Hierarchical model

– Mixed model

• Often used interchangeably

– But many make distinctions

– between specific subtypes of models

• Confusing!

• Common feature: distribution / likelihood of the
data includes an integral or sum over an unknown
quantity

Examples:

• Mixed model for subsampled data

– Plots assigned to treatments

– 5 soil cores per plot

– plot = eu

– soil core(plot) = ou

Yijk = µi + τij + εijk

τij ∼ N(0, σ2
plot)

εijk ∼ N(0, σ2
core)

– Alternatively:

µij ∼ N(µi, σ
2
plot)

Yijk | µij ∼ N(µij, σ
2
core)

Yijk =

∫
σ2
plot

f(Yijk | µij) f(µij)d µij

• Tag loss problem
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– Two groups of fish:

∗ those with tag

∗ those without tag

– Introduce a random variable R = # fish who
retained tag

– Know T = # fish tagged last year

– T −R = # fish with only a fin clip

∗ define c = (t12, t1, t2, R− (t12 + t1 + t2))

∗ If R known, these are a multinomial
sample of the R fish

∗ and T −R known

∗ f1 and f2 are two independent binomial
samples of the T −R fish who lost a tag

R ∼ Bin(T, r)

c ∼ Multinom
(
R,
(
p2, p(1− p), p(1− p), (1− p)2

))
f1 ∼ Bin(T −R, p)
f2 ∼ Bin(T −R, p)

– and (importantly) c, f1, and f2 are condi-
tionally independent given the value of R

f(c, f1, f2) ∼
∑
R

f(c | R)f(f1 | R)f(f2 | R)f(R)

Concepts

• Latent variable:

– Find a random variable that, if you knew it,
would simplify the problem

∗ R for tag loss problem

∗ µij for the subsampling problem

∗ Nt in grizzly bear problem

• to construct a model,

– Write out the model for the latent variable

– Write out the model for the observations
given the latent variable
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• fitting the model to data

– need a likelihood for the data, f(Y ))

∗ the conditional distribution f(Y |latent)
is not enough

– Need to deal with the integral or the sum

– When all random variables have normal dis-
tributions, added or substracted

∗ Y has a multivariate normal distribution

∗ Usually not independent

∗ but covariance matrix is a function of
the various variances

– In general, need to numerically approximate
that integral or evaluate that sum

– Could use likelihood

– Almost all applications shift to a Bayesian
paradigm

Bayes in principle

• How it differs from frequentist inference

• Frequentist (e.g. likelihood)

– parameters are fixed but known constants

– Data are random variables

– Inference by maximizing the likelihood func-
tion

• Bayesian inference

– parameters are random variables

– Inference is conditional on the observed data

– so data are fixed values

– need to identify prior distributions

∗ what you want to say about the parame-
ters before seeing the data

– Inference by averaging the likelihood func-
tion w.r.t. the prior

– Result is the posterior distribution of the
parameters
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Bayes in action

• Bayes rule - a mathematical statement about
probabilities

f(X | Y ) =
fY (Y |X)fX(X)∫

X
fY (Y |X)fX(X)dX

• Allows you to go from one conditional distribu-
tion to the conditional distribution “the other
way”

• A mathematical fact

• disagreements are about whether this is relevant
to data analysis

• An example of a Bayes rule computation

– Screening for rare diseases / terrorist activity

– Prostate cancer and PSA tests

– If you get a positive PSA test result, how
likely are you to have prostate cancer?

– Test is reasonably good at detecting cancer

∗ sensitivity = 86%

∗ P[positive test | have cancer] = 0.86

∗ specificity = 33%

∗ P[negative test | no cancer] = 0.33

– need P[have cancer | positive test] to answer
the Q

– Answer about 2%, depending on prevalence
of cancer!

– How gotten:

∗ US white men, 40-59 yr old, prevalence
= 1.6%

∗ assume 4,000,000 people

have cancer PSA + PSA - # people
Yes 64,000
No 3,936,000
Total 4,000,000
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– Use sensitivity and specificity to fill in test
results - going across the rows

have cancer PSA + PSA - # people
Yes 55,040 64,000
No 2,637,120 3,936,000
Total 2,692,160 4,000,000

– Compute P[cancer | + test] = 55,040 / 2,692,160
= 2.04%

• Applying Bayes rule directly

P [cancer | + test] =
P [+ test | cancer]× P [cancer]

P [+ test | cancer]× P [cancer] + P [+ test | no cancer]× P [no cancer]

=
0.86× 0.016

0.86× 0.016 + (1− 0.33)× (1− 0.016)

=
0.0138

0.0138 + 0.6593
= 0.0204

Bayes in data analysis

• θ, the parameters ⇒ X

• the data ⇒ Y

• Bayes rule gives you a distribution for the param-
eters given the data, f(X | Y )

• Connection: likelihood = f(Y | X)

• But Bayes not “free”

• Need to specify f(X): “the prior”

• Aside:

– Fisher developed fiducial inference in the
1930’s, 40’s

– attempted give f(parameter | data) without
requiring a prior

– Savage (1961): “enjoy the Bayesian omelet
without breaking the Bayesian eggs”

– almost never used today

• Types of Bayesians
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– Differ in their view of the prior

– subjective Bayes

∗ Heyday: 1950’s, 1960’s

∗ The prior is your belief

∗ People may/will have different priors

∗ And reach different conclusions from the
same data

∗ led to vicious arguments

– objective Bayes

∗ ad hoc but useful collection of methods
for learning from data

∗ emphasizes weakly informative priors

∗ now the most commonly used approach

What you get by being Bayesian

• More intuitive “intervals”

– Credible interval gives
P[parameter in a specified interval]

– Posterior predictive interval gives P[new ob-
servation in a specified interval]

• Useful probabilities, e.g.,

– P[N > 100]

– P[yield increase > cost of treatment]

• Model fit information

– Information criteria:

∗ WAIC: Widely Applicable Information
Criterion

∗ replacing older DIC: Deviance Informa-
tion Criterion

– Cross-validation assessment of fit

∗ LOO-CV: leave-one-out cv

∗ sped up by some neat theory: PSIS:
pareto-smoothed importance sampling

– Model probabilities, P[model | data]

• Account for all modeled sources of uncertainty
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– most models have “nuisance” parameters

– e.g. the variance in a t-test

∗ simple problems: can account for that
uncertainty

∗ e.g., by using a T distribution

– much harder in more complicated problems

– e.g., σ2
plot in the subsampling model

– non-Bayesian methods usually fix those at
estimated values

– ignores uncertainty in those estimates

– Kenward-Roger degrees of freedom

– Bayesian methods account for that uncer-
tainty

– in a principled manner, without problem-
specific adjustments

What you don’t get from a Bayesian analysis

• Confidence intervals

– Replaced by credible intervals

– Can choose priors so that credible interval =
confidence interval

– called matching or probability matching pri-
ors

• p-values

– statements about probability of the data

– Bayes conditions on the data

– Bayes factors can be used as an alternative

• General shift from yes/no decisions to “how big”,
“how precise” questions

What you get by being a Bayesian in the 21’st century

• Bayes requires solving that integral/sum

f(θ | data) =
fY (data|θ)fX(θ)∫

X
fY (data|θ)fX(θ)dθ
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• For years, was a huge limitation

• Some combinations of f(data | θ) and f(θ) are
“nice”

– Analytical solution to that integral

– Called “conjugate” priors

– Beta distributions for binomial probabilities

– Normal distributions for means

– Gamma distributions for variances

• Not appropriate for most non-trivial problems

• late 1980’s “the MCMC revolution”

– Markov-Chain-Monte-Carlo

– A collection of numerical methods to draw
samples from the the posterior distribution
without solving that integral

• 1997: BUGS/WinBUGS software

– Allowed a data analyst to write out a model

– software took care of all the computation

• Now: superseded by JAGS, STAN

• All have R interfaces to handle data management
and graphing

Doing Bayes in practice

• MCMC is an iterative algorithm

– requires initial values

– want the stationary distribution

– discard “burn-in” samples

– how much to discard depends on problem

• Assess convergence to the stationary distribution

– Use 3 or 4 sets of initial values

– see whether they give similar distributions

– Trace plots
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∗ Can you see the individual chains?

∗ Hopefully not

– Gelman-Rubin statistic: want close to 1

∗ Ideally less than 1.05

∗ hard problems have to accept up to 1.2

– If you haven’t converged

∗ Increase # burning samples

∗ Think about the problem:
are your priors too loose?

• If prior is arbitrary:

– How important is the choice of prior?

– Rerun with different choices

– Prior sensitivity analysis

– If sufficient data, “data overwhelms the prior”

• Gives you samples from the posterior distribution
for each parameter, from which you can compute:

– median or mean estimate

– standard errors

– credible intervals

• for parameters or combinations / transformations
of parameters

Common “weakly-informative” priors

• means, regression coefficients

– θ ∼ N(0, σ2, with large σ2, e.g. 1000

– but be careful if logit(θ)

• variances

– canonical: Γ(0.001, 0.001)

∗ mean = 1, variance = 1000

∗ doesn’t put enough probability close to 0

∗ concern for hierarchical model variances,
e.g., σ2

plot

– Exponential(1)
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– sd Unif(0, 100) or sd Unif(0, 10)

– Half-Cauchy

Local linear trend model for population dynamics:

• A very useful hierarchical model

• Two latent variables

– level: l, mean at time i

– slope: s, non-random change in mean at
time i

process

si = si−1 + γi

li = li−1 + si−1 + τi

observation

Yi ∼ N(li, σ
2
error)

or : Yi ∼ Pois(exp(li))

or : Yi ∼ NegBin(exp(li), φ)

γi ∼ N(0, σ2
slope)

τi ∼ N(0, σ2
level)

• Simplifications give other useful models

– σ2
slope = 0: si constant

– σ2
slope = 0 and σ2

level = 0:
li = li−1 + s
lt = l0 + st

• An example of a state-space time series model
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